
DIRECT CORRELATION FUNCTIONS 59

If we now substitute for H and H−1 in (3.5.7), integrate over r′′ and introduce the pair
correlation function defined by (3.1.6), we obtain the Ornstein–Zernike relation:

h(2)(r, r′) = c(2)(r, r′) +
∫

c(2)(r, r′′)ρ(1)(r′′)h(2)(r′′, r′)dr′′ (3.5.10)

This relation is often taken as the definition of c(2), but the definition as a derivative of the
intrinsic free energy gives the function greater physical meaning. Equation (3.5.10) can be
solved recursively to give

h(2)(1,2) = c(2)(1,2) +
∫

c(2)(1,3)ρ(1)(3)c(2)(3,2)d3

+
∫∫

c(2)(1,3)ρ(1)(3)c(2)(3,4)ρ(1)(4)c(2)(4,2)d3d4+ · · · (3.5.11)

This result has an obvious physical interpretation: the “total” correlation between parti-
cles 1 and 2, represented by h(2)(1,2), is due in part to the “direct” correlation between 1
and 2 but also to the “indirect” correlation propagated via increasingly large numbers of
intermediate particles. With this physical picture in mind it is plausible to suppose that the
range of c(2)(1,2) is comparable with that of the pair potential v(1,2) and to ascribe the
fact that h(2)(1,2) is generally much longer ranged than v(1,2) to the effects of indirect
correlation. The differences between the two functions for the Lennard-Jones fluid at high
density and low temperature are illustrated in Figure 3.1; c(r) is not only shorter ranged
than h(r) but also simpler in structure.
If the fluid is uniform and isotropic, the Ornstein–Zernike relation becomes

h(r) = c(r) + ρ

∫
c
(
|r− r′|

)
h(r ′)dr′ (3.5.12)
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FIG. 3.1. The pair functions h(r) (dashes) and c(r) (full curve) obtained by Monte Carlo calculations for the
Lennard-Jones fluid at a high density and low temperature. After Llano-Restrepo and Chapman.6
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110 PERTURBATION THEORY

where a is a positive constant; this is equivalent to supposing that the chemical potential is
lowered with respect to that of the hard spheres by an amount proportional to the density
and equal to 2aρ. The classic van der Waals equation is then recovered by substituting
for P0 from (5.1.1). It is clear that a first step towards improving on van der Waals’s re-
sult is to replace (5.1.1) by a more accurate hard-sphere equation of state, such as that
of Carnahan and Starling, (3.9.17). A calculation along these lines was first carried out
by Longuet-Higgins and Widom,2 who thereby were able to account successfully for the
melting properties of rare-gas solids.
The sections that follow are devoted to perturbation methods that may be regarded as

attempts to improve the theory of van der Waals in a systematic fashion. The methods we
describe have as a main ingredient the assumption that the structure of a dense, monatomic
fluid resembles that of an assembly of hard spheres. Justification for this intuitively appeal-
ing idea is provided by the great success of the perturbation theories to which it gives rise,
and which mostly reduce to (5.1.2) in some well-defined limit, but more direct evidence
exists to support it. For example, it has long been known3 that the experimental structure
factors of a variety of liquid metals near their normal melting points can to a good approx-
imation be superimposed on the structure factor of an “equivalent” hard-sphere fluid, and
Figure 5.1 shows the results of a similar but more elaborate analysis of data obtained by
molecular-dynamics calculations for the Lennard-Jones fluid. The fact that the attractive
forces play such an apparently minor role in these examples is understandable through
the following argument.4 Equation (3.6.9) shows that the structure factor determines the
density response of the fluid to a weak, external field. If the external potential is identified
with the potential due to a test particle placed at the origin, the long-range part of that po-
tential gives rise to a long-wavelength response in the density. In the long-wavelength limit
(k → 0), the response is proportional to S(k = 0) and hence, through (3.6.11), to the com-
pressibility. Under triple-point conditions the compressibility of a liquid is very small: typ-
ically the ratio of χT to its ideal-gas value is approximately 0.02. The effects of long-wave-
length perturbations are therefore greatly reduced. At lower densities, particularly in the
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FIG. 5.1. Structure factor of the Lennard-Jones fluid close to the triple point (curve) and its representation by a
hard-sphere model (points). After Verlet.4
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R.A.L. Jones, Soft Condensed Matter





Mixture of Methanol and cyclohexane is heated to 65-70C, to the critical opalescence, when the two 
immiscible liquids form one phase, then cooled back to two phases.  the first section of video is sped up 
1000%, the second part 2000%


